Početna stranicaVisoka učilištaKorisničke stranice
Physical Geodesy
Abbreviation: 48DA02Load: 30(L) + 0(P) + 0(FE) + 0(LE) + 0(S) + 0(PEE) + 0(E) + 30()
Lecturers in charge: Prof. dr. sc. Tomislav Bašić
Lecturers: Olga Bjelotomić ( )
Marko Pavasović ( )
Course description: Introduction into the physical geodesy. The principle of determining the shape and the external gravity filed of the Earth. Physical parameters as a connection between the physical surface and the rotational ellipsoid. Coordinate systems in physical geodesy. The elements of the Earth's body physics, basic geological composition of the Earth, geotectonic forces and isostatic compensation. The Earth's tide waves, geomagnetism, seismics (the basic terms). Gravitational acceleration and gravitational potential, centrifugal acceleration and centrifugal potential, gravity and gravity potential. The first, the second and the third differential quotient of gravity potential and their physical significance. Normal gravity field and normal gravity. Gravity anomalies. Absolute and relative determination of the gravity acceleration with the pendulum and gravimeter. The sources of errors in precise gravimetry, calibration function. Gravimetric reference systems and gravimetry networks. Gravity measurement on movable platforms (ship, plane) and necessary corrections. The development of the potential of attraction into the degree according to spherical functions. Introduction of disturbance potential, its properties and significance. Gravimeric method of physical geodesy: the third ?geodetic? boundary task of the potential theory and fundamental equation of physical geodesy. Solution for a geoid, Stokes and Bruns theorem. Presentation of Molodenski solution. Astrogeodetic determination of geoid surface, i.e. quasi-geoid. Combined astrogravimetric levelling. Application of the collocation method by means of the least squares and ?remove-restore? technique for precise determination of geoid surface using heterogeneous data of the Earth?s gravity field, global geopotential models and digital terrain models.
Program of exercises:
Computation of gravity reductions and gravity anomalies. Computation of the effects of Earth's tide waves in precise gravimetry. Computation of normal geomagnetic element values. Application of various method of interpolating anomalies of free air. Calculation of geoid surface using the method of least squares collocation.
Lecture languages: - - -
Compulsory literature:
1. Bašić, T.: Fizikalna geodezija (skripta), Geodetski fakultet, Zagreb 2004.
2. Heiskanen, H., Moritz, H.: Physical Geodesy, Reprint Technical University Graz 1985.
3. Torge, W.: Geodesy, 3rd Edition, Walter de Gruyter, Berlin ? New York 2001.
4. Torge, W.: Gravimetry, Walter de Gruyter, Berlin ? New York 1989.
Recommended literature:
5. Moriz, H.: Advanced Physical Geodesy, Wichman Verlag, Karlsruhe 1989.
6. Klak, S.: Geofizika (skripta), Sveučilište u Zagrebu, 1984.
7. Klak, S.: Gravimetrija (skripta), Sveučilište u Zagrebu, 1984.
8. Internetski izvori: URL1: fttp://www.iag-aig.org/ URL2: fttp://www.galagis.com/iProjekt/karta/geoid.htm
L - Lectures
P - Practicum
FE - Field exercises
LE - Laboratory exercises
S - Seminar
PEE - Physical education excercises.
E - Exercises
* - Not graded
Copyright (c) 2006. Ministarstva znanosti, obrazovanja i športa. Sva prava zadržana.
Programska podrška (c) 2006. Fakultet elektrotehnike i računarstva.
Oblikovanje(c) 2006. Listopad Web Studio.
Posljednja izmjena 2012-04-16